

COLLEGE OF SCIENCE, TECHNOLOGY AND APPLIED ARTS OF TRINIDAD AND TOBAGO

School of Nursing, Health and Environmental Sciences DEPARTMENT OF NATURAL & LIFE SCIENCES

"Transforming Lives, Transforming Communities, Transforming the Nation... One Student at a Time CHEM 133: PHYSICAL CHEMISTRY

VISION:

To be a student-centered, dynamic and innovative, world-class and multi-campus college, promoting excellence in teaching and learning, serving diverse communities and producing lifelong learners who can compete globally.

MISSION:

To be the premier educational institution in: providing high quality, affordable and accessible education programmes serving the needs of business, industry and the diverse campus communities and facilitation the personal and professional development of its students, faculty and staff.

The Institution's motto "Transforming Lives, Transforming Communities, Transforming the Nation... One Student at a Time." is embodied in our Core Curriculum as well as Programme Curriculum through ten competencies which students will understand, practice and demonstrate upon successful completion of their programmes of study at the College. These competencies are as follows:

Programme Curriculum Competencies
KNOWLEDGE
A clear understanding of the principles and concepts of related theories and models of the particular discipline and the relationship to
other disciplines through study, education and experience.
EFFECTIVE COMMUNICATION
The ability to accurately transfer thoughts and meaning through interpersonal skills using appropriate registers.
ANALYTICAL ABILITY
The ability to systematically gather relevant data and make appropriate deductions, inferences and connections with a view to
judiciously solve problems.
TECHNOLOGICAL EXPERTISE
Utilization of current tools and techniques with the view to achieving efficiency and improving functionality.
COLLABORATION
Proficiency in working cohesively with other stakeholders with the view to achieving common goals.
CREATIVITY
The ability to explore issues and generate solutions from an innovative perspective.
PROFESSIONALISM
A life-long engagement in reflective, moral, ethical and best practices in all spheres.
DIVERSITY
The ability to recognize and respect uniqueness, worth and dignity of others whilst developing one's own belief system.
SOCIAL AND GLOBAL RESPONSIBILITY
A conscientious approach that reflects social and global accountability, commitment, caring and integrity.
ENTREPRENEURSHIP
The ability to recognize and take advantage of legitimate opportunities for innovation and social improvement, whilst accepting the related risks.

Course Code:	CHEM 133
Course Title:	Physical Chemistry
Number of Credits:	3
Semester:	2
Track:	-
Co-requisites:	-
Prerequisite:	CHEM 132 (Grade C and above)
Prerequisite for:	-
Number of Contact	45 (Class) + 9 (Lab)
Hours:	
Delivery:	Learning is accomplished through a combination of face to face teaching and practical experiences supported by resources on the e-classroom
Instructor:	
Office:	
Office Hours:	
Telephone:	
Email:	

COURSE DESCRIPTION AND GOAL:

This course builds on the topics covered in CHEM 131 & CHEM 132 and covers topics including: chemical thermodynamics, chemical kinetics, chemical equilibrium, ionic equilibria, energy and forces, and electrochemistry. It allows students to develop the ability to interpret and analyze data on these aspects of physical chemistry.

The competencies addressed in this course are **Knowledge** at the **Immersion** level, **Effective Communication** at the **Intermediate** level, **Analytical Ability** at the **Immersion** and **Intermediate** levels, **Technological Expertise** at the **Intermediate** level, **Collaboration** at the **Immersion** and **Intermediate** levels and **Creativity** at the **Intermediate** level. The general objectives for this course are listed by Competency:

General Objectives for Physical Chemistry

KNOWLEDGE

Immersion Level: Demonstrates comprehension of the relevant and significant ideas across disciplines and can make comparisons and draw conclusions about them.

Students should be able to:

- **K1.** Interpret the principles and concepts of thermodynamics
- K2. Interpret the factors which affect rates of reactions
- K3. Explain the basic concepts of chemical equilibrium
- **K4.** Explain the difference between strong and weak electrolytes
- **K5.** Explain the autoionization of water
- K6. Describe the difference between solvolysis and hydrolysis
- **K7.** Describe the common ion effect

K8. Explain the chemistry of buffer solutions

K9. Describe what acid-base indicators are and how they function

K10. Outline how to write solubility product constant expressions

K11. Outline some methods of dissolving precipitates

K12. Explain the basic concepts of energy and forces

K13. Outline the chemistry of corrosion

K14. Outline the chemistry of primary and secondary voltaic cells

EFFECTIVE COMMUNICATION

Intermediate Level: Selects, adapts, and combines communication strategies in relation to disciplinary frameworks and theories.

Students should be able to:

E1. Use Standard English to write logical and concise essays in Physical Chemistry using labeled diagrams, equations, and calculations to support answers.

ANALYTICAL ABILITY

Immersion Level: Analyses structures and organizations and perceives and makes relationships.

Students should be able to:

- A1. Apply the first and second laws of thermodynamics to new situations
- A2. Demonstrate an understanding of the factors which affect reaction rates
- A3. Demonstrate correct usage of the equilibrium constant, Kc
- A4. Recognize some common, slightly soluble compounds
- A5. Demonstrate an understanding of the distribution of energy in molecules

Intermediate Level: Articulates problem solving processes and practices using disciplinary problem solving processes to approach problems.

Students should be able to:

- A6. Apply the first and second laws of thermodynamics to solve mathematical problems
- **A7.** Apply the laws and theories of kinetics to solve mathematical problems
- **A8.** Apply the equilibrium constant, Kc, to solve mathematical problems
- **A9.** Demonstrate an understanding of how polyprotic acids ionize in steps and how to calculate concentrations of all species in solutions of polyprotic acids
- A10. Apply knowledge of buffer chemistry to carry out calculations related to buffer solutions and their action
- A11. Apply knowledge of Ksp values to solve mathematical problems
- A12. Apply the concepts of fractional precipitation to solve mathematical problems
- A13. Evaluate the effect of concentrations (or partial pressures) on electrode potentials

TECHNOLOGICAL EXPERTISE

Intermediate Level: Displays positive attitudes towards technology uses and independently selects appropriate tools that support productivity, collaboration, learning and personal pursuits.

Students should be able to:

- T1. Perform pH/Acid-Base titrimetry
- T2. Perform out quantitative analyses using the UV spectrophotometer
- T3. Standardize a pH meter and then use it to determine the pH of various solutions

COLLABORATION

Entry Level: Engages in collaboration when learning across disciplines.

Students should be able to:

C1. Work in a group to solve calculation types problems

Immersion Level: Initiates cooperative learning activities by seeking out others for assistance and for building projects together and acts as an active facilitator.

Students should be able to:

C2. Work in groups to gather, present and explain material pertaining to specific course topics

Intermediate Level: Values and incorporates others' ideas and other points of view and recognizes there is power in combining ideas.

Students should be able to:

C3. Work in groups on topic specific research projects

CREATIVITY

Intermediate Level: Develops new ways to approach content and convey novel findings that demonstrate imaginative capacities.

Students should be able to:

Cr1. Describe an innovative approach to the topic of their research project

Key: Competency Levels

~~~		
	<u>Competency</u>	Levels
	K= Knowledge	En = Entry
	E= Effective Communication	Im =Immersion
	A = Analytical Ability	It = Intermediate
	T= Technological Expertise	
	C= Collaboration	
	Cr= Creativity	

Week	Unit	Content	Specific Objectives and Activities	Competency	Level
1	Unit 1 - Chemical Thermodynamics	The First Law of     Thermodynamics	Students should be able to: 1. Use the First Law of Thermodynamics to relate heat, work	K1	Im
		• Bond energies	and energy changes		
		<ul> <li>Changes in Internal Energy, ΔΕ</li> </ul>	2. Use bond energies to estimate heats of reaction for gas phase reactions; use $\Delta H$ values for gas phase reactions to find bond energies	A6	It
		<ul> <li>Relationship between ΔH and ΔE     </li> </ul>	3. Discuss changes in Internal Energy, $\Delta E$ , and its relationship to heat and work	K1	Im
		• The two aspects of spontaneity	4. Discuss the relationship between $\Delta H$ and $\Delta E$ at constant temperature and pressure	K1	Im
		• Dispersal of energy and matter	5. Distinguish between product-favoured (spontaneous) processes and reactant-favoured (nonspontaneous)	A1	Im
		<ul> <li>Entropy, S and entropy change, ΔS</li> <li>The Second law of</li> </ul>	<ul><li>6. Outline the relationship of entropy to the dispersal of energy and matter (disorder) in a system</li></ul>	K1	Im
		Thermodynamics	7. Use tabulated values of absolute entropies to calculate the entropy changes, $\Delta S$	A6	It
		• Free Energy Change, $\Delta G$ , and spontaneity	8. Explain how the spontaneity of a process is related to entropy changes – the Second Law of Thermodynamics	K1	Im
		• The temperature dependence of spontaneity	<ol> <li>Calculate changes in Gibbs free energy, ΔG, by two methods: (a) from values of ΔH and ΔS and (b) from tabulated values of standard molar free energies of</li> </ol>	A6	It

formation and know when to use each type of calculation		
10. Discuss the temperature dependence of spontaneity	K1	Im
Activities:		
READ:		
<ol> <li>General Chemistry (9th Edition) – Chapter 15: Chemical Thermodynamics, pages 565 - 605</li> </ol>	K1	Im
VIEW:		
1. Introduction to Thermodynamics – Steorn Physics Primer http://www.youtube.com/watch?v=sCjVMMe_w0g&feature	K1, A1	Im, Im
<ul> <li><u>=related</u></li> <li>Using Bond Energies to Calculate Heats (Enthalpy) of Reactions – YouChem Tutorials</li> </ul>	A6	It
http://www.youtube.com/watch?v=1FCf2UhPS40		
3. Calculate the standard entropy change for a reaction - IB Chemistry HL	A6	It
http://www.youtube.com/watch?v=IwRy4iYVQLI		
DISCUSS:		
1. <b>The two aspects of spontaneity.</b> What are the two factors which affect the spontaneity of any physical or chemical	K1	Im
<ul> <li>change?</li> <li>2. The dispersal of energy and matter. How does the dispersal of energy in a system affect the distribution of energy in that system? What factors affect the dispersal of energy in a system? What factors influence the dispersal of</li> </ul>	K1	Im
<ul> <li>matter in a system?</li> <li>3. Entropy, S and entropy change, ΔS. What factors influence entropy changes?</li> </ul>	A6	It
ASSIGNMENT 1 [10% of Assignment Mark]		
CALCULATE (in groups of three): 1. Bond Energies	A6, C1	It, En
2. Changes in Internal Energy, $\Delta E$	A6, C1 A6, C1	It, En It, En
3. Entropy, S and entropy change, $\Delta S$	A6, C1	It, En
4. Free Energy Change, $\Delta G$ , and use it to predict the spontaneity of a reaction	A6, C1	It, En

			5. The temperature at which a process is at equilibrium	A6, C1	It, En
Week	Unit	Content	Specific Objectives and Activities	Competency	Level
2	Unit 2 –	Transition State	Students should be able to:		
	<b>Chemical Kinetics</b>	Theory			
		• Reaction Mechanisms and the rate-law	<ol> <li>Describe the main aspects of transition state theory and the role of activation energy in determining the rate of a reaction</li> </ol>	K2	Im
		<ul> <li>Temperature: The Arrhenius Equation</li> </ul>	2. Explain how the mechanism of a reaction is related to its rate-law expression	K2	Im
		Catalysts	3. Devise the rate-law expression that would result from a proposed reaction mechanism	A7	It
			4. Identify reactants, products, intermediates, and catalysts in a multistep reaction mechanism	A2	Im
			5. Explain how temperature affects rates of reactions	K2	Im
			<ol> <li>Use the Arrhenius equation to relate the activation energy for a reaction to changes in its rate constant with changing temperature</li> </ol>	A7	It
			7. Explain how a catalyst changes the rate of a reaction	K2	Im
			8. Describe homogenous and heterogeneous catalysis	K2	Im
			Activities: READ:		
			<ol> <li>General Chemistry (9th Edition) – Chapter 16: Chemical Kinetics, pages 606 - 659</li> </ol>	K2	Im
			VIEW:		
			<ol> <li>Transition State Theory – A Traffic Metaphor – YouChem Tutorials</li> </ol>	K2	Im
			<ul> <li><u>http://www.youtube.com/watch?v=2ae8aBoEwS8</u></li> <li>Chemical Kinetics - Reaction mechanisms - College &amp; AP Chemistry Tutorial 13</li> </ul>	K2	Im

	http://www.youtube.com/watch?v=NXaVqplPDlo         3.       Arrhenius Equation and Activation Energy – Linda Susan Hanson         http://www.youtube.com/watch?v=crJ0JJiiGfw	It
	DISCUSS.	
	DISCUSS: 1. <b>Transition State Theory.</b> What are the main aspects of transition state theory? What is the role of activation energy in determining the rate of a reaction?	Im
	<ul> <li>2. Reaction Mechanisms and the Rate Law Expression. How is the mechanism related to the rate-law expression? How is the rate-law expression predicted from the proposed reaction mechanism?</li> </ul>	Im, It
	3. Temperature: The Arrhenius Equation. How does temperature affect the rates of reactions? How is the Arrhenius equation used to relate activation energy toA2, A7	Im, It
	<ul> <li>changes in the rate constant with changing temperature?</li> <li>4. Catalysts. How do catalysts change the rate of a reaction? K2 What is the difference between homogenous and heterogeneous catalysts?</li> </ul>	Im
	ASSIGNMENT 2 [10% of Assignment Mark]ASSIGNMENT 2 [10% of Assignment Mark]CALCULATE (in groups of three):1. The specific rate constant, k, using the Arrhenius EquationA7, C12. The activation energy for a reaction using the ArrheniusA7, C1EquationEquationEquation	It, En It, En
	PRACTICAL EXERCISEA7, E1, T1,1.Laboratory Experiment 1: Reaction Rate Lab – Sulphur ClockA7, E1, T1,	It, It, It, Im
	GROUP PROJECTS       Assignment of Group Projects. Due date: Week 14.       A1-12         See Appendix II for Mark Scheme       (dependent or topic), C3, Cr	

Week	Unit	Content	Specific Objectives and Activities	Competency	Level
3 & 4	Unit 3 – Chemical	• Partial pressures and the equilibrium	Students should be able to:		
	Equilibrium constant	1. Use the equilibrium constant expressed in terms of partial pressures $(K_p)$ and relate $K_p$ to $K_c$	A3	Im	
		• Relationship between K _p and K _c	2. Describe heterogeneous equilibria and write their equilibrium constants	K3	Im
		Heterogeneous     equilibria	3. Use the relationship between thermodynamics and equilibrium	A3	Im
		• Relationship between $\Delta G^{o}_{rxn}$ and the	4. Estimate equilibrium constants at different temperatures	A8	It
		<ul><li>equilibrium constant</li><li>Evaluation of</li></ul>	5. Relate the variation of Gibbs free energy to pressure for an ideal gas	A8	It
	Evaluation of equilibrium constants at Different Temperatures	<ol> <li>Relate the variation of Gibbs free energy to temperature for an ideal gas</li> </ol>	A8	It	
		• The variation of Gibbs free energy with	7. Use the free energy to determine the position of phase equilibria	A8	It
	<ul> <li>pressure for an ideal gas</li> <li>The variation of Gibbs free energy with temperature for an ideal</li> </ul>	8. Summarize the Clapeyron and the Clausius-Clapeyron equation for two phase systems	A8	It	
		9. Use Raoult's Law to define ideal solutions	К3	Im	
		gas	Activities:		
	• Application of free energy in determining the position of phase	<ul> <li>READ:</li> <li>1. General Chemistry (9th Edition) – Chapter 17: Chemical Equilibrium, pages 685 - 702</li> </ul>	К3	Im	
		<ul><li>equilibria</li><li>Derivation of the</li></ul>	VIEW: 1. Heterogeneous Equilibria – The Khan Academy	K3	Im
		Clapeyron and the Clausius-Clapeyron	<ul> <li><u>http://www.youtube.com/watch?v=TsXITWgyItw</u></li> <li>Gibbs Free Energy: Temperature and Pressure Dependence – University of Colorado Boulder</li> </ul>	A3	Im
	equation for two phase systems	<ul> <li><u>http://www.youtube.com/watch?v=0IGQKS_3Vpw</u></li> <li>Phase Equilibria – Professor Chuck Wight, The University</li> </ul>	A8	It	

		Ideal solutions and	of Utah		
		Raoult's Law	http://www.youtube.com/watch?v=jNWTnQfQ1wE		
			DISCUSS:		
			1. <b>Partial pressures and the equilibrium constant.</b> How is	A3	Im
			Kp different from Kc? What is the relationship between		
			Kp and Kc?		
			2. Heterogeneous Equilibria. What is heterogeneous	K3	Im
			equilibria? How are Kp and Kc expressions written for		
			heterogeneous equilibria?	10	T.
			3. Relationship between $\Delta G^{\circ}_{rxn}$ and the equilibrium	A8	It
			<b>constant.</b> What is the relationship between $\Delta G^{\circ}_{rxn}$ and the		
			<ul><li>equilibrium constant?</li><li>4. Variation of Gibbs free energy. How does Gibbs free</li></ul>	A8	It
			energy vary with temperature for an ideal gas? How does	Ao	11
			Gibbs free energy vary with pressure for an ideal gas?		
			clobs nee chergy vary with pressure for an ideal gas.		
			ASSIGNMENT 3 [10% of Assignment Mark]		
			CALCULATE (in groups of three):		
			1. Equilibrium constant in terms of partial pressures in	A8, C1	It, En
			atomospheres, Kp		
			2. Concentrations using Kc and Kp	A8, C1	It, En
			3. Kc and Kp for heterogenous equilibria	A8, C1	It, En
			4. K versus $\Delta G^{\circ}rxn$	A8, C1	It, En
			5. Kp at different temperatures	A8, C1	It, En
			ASSIGNMENT 4 [10% of Assignment Mark] WRITE(individually):		
			1. Use given information to derive the Clapeyron and the	A8, E1	It, It
			Clausius-Clapeyron equation for two phase systems	110, 11	11, 11
			2. Use Raoult's Law to define ideal solutions	A8, E1	It, It
Week	Unit	Content	Specific Objectives and Activities	Competency	Level
5&6	Unit 4 –	A Review of Strong	Students should be able to:		
	Ionic Equilibria I:	Electrolytes			
	Acids & Bases		1. Identify strong electrolytes and calculate concentrations of	K4, A9	Im, It
		• The Autoionization of	their ions		
		water		115	, I
			2. Explain the autoionization of water	K5	Im
		• The pH and pOH			

	scales	3.	Describe and explain the pH and pOH scales	K5	Im
	<ul> <li>Ionization constants for weak monoprotic acids and bases</li> </ul>	4.	Use ionization constants for weak monoprotic acids and bases	A9	It
		5.	Discuss the concepts of solvolysis and hydrolysis	K6	Im
	<ul><li>Polyprotic acids</li><li>Solvolysis</li></ul>	6.	Outline how polyprotic acids ionize in steps and how to calculate concentrations of all species in solutions of	A9	It
	• Salts of Strong Bases		polyprotic acids		
	and Strong Acids	7.	Outline acid-base equilibrium concepts with respect to salts of strong bases and strong acids	A9	It
	• Salts of strong bases and weak acids	8.	Outline acid-base equilibrium concepts with respect to salts of strong bases and weak acids	A9	It
	• Salts of weak bases and strong acids	9.	Outline acid-base equilibrium concepts with respect to salts of weak bases and strong acids	A9	It
	• Salts of weak bases and weak acids	10.	Outline acid-base equilibrium concepts with respect to salts of weak bases and weak acids	A9	It
		11.	Outline acid-base equilibrium concepts with respect to salts of small, highly charged cations	A9	It
		Activiti	es:		
		READ: 1.	General Chemistry (9 th Edition) – Chapter 18: Ionic Equilibria I: Acids and Bases, pages 703 - 742	K4, K5	Im, Im
		VIEW:			
		1.	Chemistry 12.3a pH and pOH – IsaacsTEACH http://www.youtube.com/watch?v=pFK16GsU1e4	K5	Im
		2.	Ionization Constant Lecture – Kurtzmanj Channel http://www.youtube.com/watch?v=5Wht Hl2zfM	A9	It
		DISCUS	SS: <b>Strong electrolytes.</b> What are strong electrolytes? How	K4	Im
			are they identified?		

2. <b>The autoionization of water.</b> What is the expre	ession for K5	Im
the autoionization of water?		
3. Ionization constants for weak monoprotic acid	ds and A9	It
<b>bases.</b> How is the ionization constant of a weak		
calculated?		
4. <b>Polyprotic acids.</b> What are polyprotic acids? Ho ionize?	ow do they A9	It
5. <b>Solvolysis.</b> What is solvolysis?	K6	Im
CALCULATE (in groups of three):		
1. Ion concentrations	A9, C1	It, En
2. pH, H ₃ O ⁺ from pH, pH and pOH of an acidic sol [H ₃ O ⁺ ], pH, [OH ⁻ ] and pOH from concentration		It, En
3. Ka and pKa from equilibrium concentrations, Ka		It, En
percent ionization, Ka from pH, Concentration fr Percent ionization, pKa values		- 7
4. pH of a weak base solution	A9, C1	It, En
5. Molarity using pH, Concentration of species usin		It, En
molarity		,
6. Kb for the anion of a weak acid	A9, C1	It, En
7. Percent hydrolysis	A9, C1	It, En
8. pH of a soluble salt of a strong acid and a weak b	base A9, C1	It, En
ASSIGNMENT 5 [10% of Assignment Mark]		
WRITE(individually):		
1. Write an essay to explain the following points:	A9, E1	It, It
the solutions of salts of strong bases and acids are always neutral	d strong	
• the solutions of salts of strong bases and	d weak	
acids are always basic		
• the solutions of salts of weak bases and	strong	
acids are always acidic	Suong	
In the essay, also discuss the pH of the solutions of	of weak	
bases and weak acids.	of nout	
2. Write an essay discussing the hydrolysis of salts contain small, highly charged cations.	s that A9, E1	It, It
7 MIDTERM ASSESSMENT 1: UNITS 1 – 3 (15%) - See Appendix 1 for 7	Image: Cable of Specification	tions

Week	Unit	Content	Specific Objectives and Activities	Competency	Level
8	Unit 5 – Ionic Equilibria II: Buffers & Titration Curves	<ul><li>The common ion effect and buffer solutions</li><li>Buffering action</li></ul>	<ul><li>Students should be able to:</li><li>1. Explain the common ion effect and give illustrations of its operation</li></ul>	K7	Im
	Preparation of buffer solutions		2. Describe buffer solutions and outline their chemistry	K8	Im
		• Acid-Base indicators	<ol> <li>Outline how to prepare a buffer solution of a specified pH</li> <li>Carry out calculations related to buffer solutions and their precise.</li> </ol>	A10 A10	It It
		• Strong Acid/Strong Base Titration curves	<ul><li>action</li><li>5. Explain what acid-base indicators are and how they function</li></ul>	К9	Im
		• Weak Acid/Strong Base Titration curves	6. Identify what species are present at various stages of titration curves for (a) strong acids and strong bases, (b)	K9	Im
	<ul> <li>Weak Acid/Weak Base Titration curves</li> <li>Summary of Acid-Base Calculations</li> </ul>	weak acids and strong basses, and (c) weak acids and weak bases			
		<ol> <li>Carry out calculations based on titration curves for (a) strong acids and strong bases and (b) weak acids and strong bases</li> </ol>	A10	It	
			Activities: READ: 1. General Chemistry (9 th Edition) – Chapter 19: Ionic Equilibria II: Buffers and Titration Curves, pages 743 - 770	K7, K8, K9	Im, Im, Im
			VIEW: 1. Buffer Solutions – Professor Chuck Wight, The University of Utah <u>http://www.youtube.com/watch?v=O_QlZe4fv4g</u>	K8	Im
			2. Preparation of a Buffer Solution – S. Venkatachalam <u>http://www.youtube.com/watch?v=HgpwCyGSVos</u>	A10	It
			DISCUSS: 1. The common ion effect and buffer solutions. What is the	K7, K8	Im

			<ul> <li>common ion effect? What are buffer solutions?</li> <li>2. Buffering action. How does a buffer work?</li> <li>3. Preparation of buffer solutions. What are the different methods of preparing buffer solutions?</li> <li>4. Acid-base indicators. Why are acid-base indicators important? How do they work?</li> <li>5. Titration curves. What is a titration curve? Why is the end point and the equivalence point important? How are titration curves interpreted? What are the different types of titration curves?</li> </ul>	K8 A10 K9 A10	Im It Im It
			<ul> <li>ASSIGNMENT 6 [10% of Assignment Mark]</li> <li>CALCULATE (in groups of three):         <ol> <li>Concentrations of species in weak acid/salt of weak acid buffer solutions, concentrations of species in weak acid/salt of weak acid buffer solutions (via the Henderson-Hasselbalch Equation), concentration of species in weak base/salt of weak base buffer solutions</li> <li>Buffering action, pH of a buffer solution</li> <li>Buffer preparation by addition of a salt, Buffer preparation by partial neutralization</li> </ol> </li> </ul>	A10, C1 A10, C1 A10, C1	It, En It, En It, En
			<ul> <li>WRITE:</li> <li>1. Write short notes on the different types of titration curves. Include labeled diagrams of the different types of titration curves.</li> </ul>	E1, A10	It, It
			PRACTICAL EXERCISE 1. Laboratory Experiment 2: pH / Acid-Base Indicators / Buffers	A10, E1, T2, C2	It, It, It, Im
Week	Unit	Content	Specific Objectives and Activities	Competency	Level
9	Unit 6 – Ionic Equilibria III: The Solubility Product Principle	<ul> <li>Solubility Product Constants</li> <li>Determination of Solubility Product Constants</li> </ul>	<ol> <li>Students should be able to:</li> <li>Write solubility product constant expressions</li> <li>Explain how K_{sp} values are determined</li> </ol>	A4 K10	Im Im
		• Uses of Solubility	3. Use $K_{sp}$ values in chemical calculations	A11	It

Product constants	4. Identify common, slightly solubl	e compounds	A4	Im
Fractional Precipitation	5. Outline fractional precipitation a separate ions	nd how it can be used to	A12	It
Simultaneous     equilibria involving     slightly soluble     compounds	6. Outline how simultaneous equilit solubility	bria can be used to control	A12	It
-	7. Describe some methods of dissol	lving precipitates	K11	Im
Dissolving precipitates	<b>ivities:</b> AD:			
	<ol> <li>General Chemistry (9th Edition) - Equilibria III: The Solubility Pro - 793</li> </ol>		K10, K11	Im, Im
	W:			
	1. Chemistry Tutorial 9.3c: Solubility I Mark Rosengarten	Product Constant, Ksp –	A4, A11	Im, It
	<ol> <li><u>http://www.youtube.com/watch?</u></li> <li>Chemistry: Fractional Precipitati <u>http://www.youtube.com/watch?</u> <u>=related</u></li> </ol>	on – Mindbites.com	A12	It
	CUSS:			
	<ol> <li>Solubility product constants. We constants? How are solubility product solubility product solubility products?</li> </ol>	oduct constants	K10	Im
	2. <b>Fractional precipitation.</b> What Why is fractional precipitation us	is fractional precipitation?	A12	It
	3. Simultaneous equilibira involv compounds. When does simulta	ing slightly soluble	A12	It
	4. <b>Dissolving precipitates.</b> When v		K11	Im
	<b>SIGNMENT 7 [10% of Assignment</b> LCULATE (in groups of three):	Mark]		
	<ol> <li>Molar solubility and product con and solubility product constant, I Ksp values, Molar solubilities an</li> </ol>	Molar solubilities from	A11, C1	It, En
	<ol> <li>Prediction of precipitate formation</li> </ol>		A12, C1	It, En

			<ul> <li>precipitation</li> <li>3. Concentration of common ion, Concentration required to initiate precipitation</li> <li>4. Fractional precipitation</li> <li>5. Simultaneous equilibria</li> <li>WRITE: <ol> <li>Summarize the conditions under which precipitates will dissolve.</li> </ol> </li> </ul>	A12, C1 A12, C1 A12, C1 K11, E1	It, En It, En It, En Im, It
			PRACTICAL EXERCISE           1.         Laboratory Experiment 3: Solubility Product	A4, A11, A12, E1, T3, C2	It, It, It It, It, Im
Week	Unit	Content	Specific Objectives and Activities	Competency	Level
10 & 11	Unit 7 – Energy and Forces	<ul> <li>The Law of Conservation of energy</li> <li>Newton's Laws of motion</li> <li>Fundamental interactions</li> </ul>	<ol> <li>Students should be able to:         <ol> <li>State the Law of Conservation of Energy</li> <li>Use scalars and vectors to describe Newton's Laws of Motion</li> <li>Outline the fundamental interactions including gravitational, electric, weak and strong interactions</li> </ol> </li> </ol>	K12 K12 K12	Im Im Im
		<ul><li>Types of molecular energy</li><li>Ideal gas law</li></ul>	<ol> <li>Describe the types of molecular energy - translational, rotational and vibrational</li> <li>State the ideal gas law</li> </ol>	K12	Im
		• The Equirpartition principle	<ul><li>6. Apply the ideal gas law to derive the Equipartition principle</li></ul>	A5	Im
		<ul> <li>Rotational and vibrational energy of a diatomic gas</li> </ul>	7. Outline classical expressions for the rotational and vibrational energy of a diatomic gas	A5	Im
		• Heat capacities of ideal gases	<ol> <li>Bescribe the heat capacities of ideal gases</li> <li>Outline the classical treatment of the variation of heat capacity with temperature and the failure of the classical</li> </ol>	K12 K12	Im Im

Classical treatment of	prediction		
the variation of heat capacity with temperature	10. Describe the quantized nature of molecular energy levels	K12	Im
Quantum theory     predictions of energy     for atoms and diatomics	<ol> <li>Discuss the quantum theory predictions of translational, rotational and vibrational energy levels for atoms and diatomics</li> </ol>	K12	Im
<ul> <li>Maxwell-Boltzmann distribution law</li> </ul>	<ol> <li>Outline the Maxwell-Boltzmann distribution law for an assembly of molecules at equilibrium at constant temperature</li> </ol>	A5	Im
• The quantum- mechanical treatment of heat capacity and its	13. Outline the quantum mechanical treatment of heat capacity and its temperature variation	A5	Im
temperature variation	14. Give examples of phenomena which show an exponential dependence on temperature	K12	Im
Phenomena which show an exponential dependence on temperature	15. Relate potential energy curves to the variation of the electronic energy of a diatomic with internuclear distance and the relation to dissociation energy	A5	Im
• Potential energy curves	Activities: READ:		
	<ol> <li>General Chemistry (9th Edition) – Chapter 12: Gases and the Kinetic-Molecular Theory, pages 400 - 447</li> </ol>	K12	Im
	VIEW:		
	<ol> <li>VideoBrief: Newton's Laws of Motion illustrated with 3D animations and motion graphics Bryan Ierardi, Science Vision http://www.youtube.com/watch?v=iH48Lc7wq0U</li> </ol>	K12	Im
	<ol> <li>6.2.5 Sketch/Explain Qualitatively the Maxwell-Boltzmann Energy Distribution Curve IB Chemistry SL – Rich Thornley http://www.youtube.com/watch?v=YnHIfqUZi48</li> </ol>	A5	Im
	<ol> <li>Thermodynamics and Chemical Dynamics: Lec 5. The Equipartition Theorum – Professor Reginald M. Penner, University of California, Irvine <u>http://www.youtube.com/watch?v=ymk3YvH2m9c</u></li> </ol>	A5	Im
	DISCUSS:		

			1.	<b>The law of conservation of energy.</b> What is the law of conservation of energy?	K12	Im
			2.	<b>Types of molecular energy</b> ? What are the three types of molecular energy? What is quantized nature of molecular energy levels? What are the quantum theory predictions of translational, rotational and vibrational energy levels for atoms and diatomics?	K12	Im
			3.	<b>Heat capacity.</b> What is heat capacity? What is the classical treatment of the variation of heat capacity with temperature? How does the classical prediction fail?	K12	Im
			4.	<b>The equipartition principle.</b> How is the ideal gas law applied to derive the equipartition principle?	A5	Im
			CREAT class):	<b>MENT 8 [10% of Assignment Mark]</b> The presentations on the following (individually to present to		
			1.	An outline of the Maxwell-Boltzmann distribution law for an assembly of molecules at equilibrium at constant temperature	A5, E1	Im, It
			2.	A summary relating potential energy curves to the variation of the electronic energy of a diatomic with internuclear distance and the relation to dissociation energy	A5, E1	It, It
12	MIDTER	M ASSESSMENT 2: UN	NITS 4	- 6 (15%) - See Appendix I for Table of	Specification	ns
Week	Unit	Content		Objectives and Activities	Competency	Level
13	Unit 8 - Electrochemistry	<ul> <li>Corrosion</li> <li>Corrosion protection</li> <li>The Nernst equation</li> <li>Using electrochemical</li> </ul>		s should be able to: Describe some corrosion processes and some methods for preventing corrosion	K13	Im
		<ul> <li>Osing electrochemical cells to determine concentrations</li> <li>The relationship of E^o_{cell} to ΔG^o and K</li> </ul>	2.	Use the Nernst equation to relate electrode potentials and cell potentials to different concentrations and partial pressures	A13	It
		<ul> <li>Dry cells</li> <li>The lead storage battery</li> <li>The nickel-cadmium</li> </ul>	3.	Relate the standard cell potential ( $E^{o}_{cell}$ ) to the standard Gibbs free energy change ( $\Delta G^{o}$ ) and the equilibrium constant (K)	A13	It
	1	(Nicad) cell	1	Distinguish the compositions and reactions of some useful	K14	Im

• The hydrogen-oxygen	primary and secondary cells (batteries)		
fuel cell	<ol> <li>Outline the electrochemical processes involved in discharging and recharging a lead storage (automobile) battery</li> </ol>	K14	Im
	6. Outline the electrochemical processes involved in the nickel-cadmium (Nicad) cell	K14	Im
	<ol> <li>Outline the electrochemical processes involved in the hydrogen oxygen fuel cell</li> </ol>	K14	Im
	Activities:		
	<ul> <li>READ:</li> <li>1. General Chemistry (9th Edition) – Chapter 21: Electrochemistry, pages 794 - 841</li> </ul>	K13, K14	Im, Im
	VIEW: 1. Chemistry: Corrosion & Prevention of Corrosion – Mindbites.com <u>http://www.youtube.com/watch?v=CnFuMWpmJzg</u>	K13	Im
	<ul> <li>DISCUSS:</li> <li>1. Corrosion. What is corrosion? How can metals be protected from corrosion?</li> <li>2. Effect of concentration (or partial pressures) on electrode potentials. What is the Nernst equation? When is the Nernst equation used?</li> </ul>	K13 A13	Im It
	<ul> <li><u>ASSIGNMENT 9 [10% of Assignment Mark]</u></li> <li>CALCULATE(in groups of three):</li> <li>1. The potential, E, for a half-cell reaction using the Nernst equation, The overall cell potential using the Nernst equation, Q, [H⁺] and pH using the Nernst equation</li> <li>2. ΔG^o from cell potentials, K from cell potentials</li> </ul>	A13, C1 A13, C1	It, En It, En
	ASSIGNMENT 10 [10% of Assignment Mark] WRITE (individually): Write short summary notes on primary and secondary voltaic cells	K14, E1	Im, It

14	PROJECT PRESENTATIONS – See Appendix II for Rubric
15	TUTORIAL
16	FINAL EXAMINATION: UNITS 1 – 8 (40%) - See Appendix 1 for Table of Specifications

#### FOR THIS COURSE, THE FOLLOWING GRADING SCHEME WILL BE USED:

Grading system used in AAS for Chemistry						
Mark Range	Definitions	Grade	GPA			
90 - 100	Excellent	А	4.0			
85 - 89	Very good	B+	3.5			
80 - 84	Good	В	3.0			
75 – 79	Satisfactory	C+	2.5			
70 - 74	Average	С	2.0			
65 - 69	Below average	D+	1.5			
60 - 64	Minimum passing grade	D	1.0			
0 - 59	Fail	F	0.0			

The mark allocation for this course will be broken down as follows:

Mark Allocation system used for AAS in Chemistry	
2 In-course exams at 15% each	30 %
See Appendix I for Table of Specifications	
Group Project	10%
See Appendix II for Rubric	
Assignments	10 %
See Appendix III for Rubric	
Laboratory performance and Reporting	10 %
An 80% attendance of Labs is expected for all Science courses. Labs will be assessed based on M skills, Analytical Skills, Observation skills, Reporting and Calculations. Students are expected to safety precautions outlined in the Laboratory manual, with special attention to appropriate lab wear and covered shoes.) Students are further expected to be cognizant of the mark penalty for late submit reports and exercises, where two (2) marks per day will be deducted for late assignments. Students at o submit an explanatory letter and a medical certificate should illness prevent timely complete assignment. See Appendices IV-VI for Rubrics	o adhere to (Lab coats ssion of lab are required
Final Examination	40 %
See Appendix I for Table of Specifications	

Please note: Any late assignments that are not delivered directly to the lecturer must be deposited with the Programme Assistant and signed for in the register. Assignments that are not submitted in the format designated by the lecturer will not be graded.

#### STATEMENT ON ACADEMIC DISHONESTY

"Academic dishonesty is unacceptable and will not be tolerated. Cheating, forgery, plagiarism and collusion in dishonest acts undermine the College's educational mission and the student's personal and intellectual growth. COSTATT students are expected to bear individual responsibility for their work and to uphold the ideal of academic Integrity. Anu Student who attempts to compromise the academic process will be sanctioned." – COSTAATT Academic, Integrity and Honesty Policies and Procedures Handbook.

#### A QUICK NOTE ON CITATION

*Plagiarism* is the representation of someone else's ideas or words as one's own. It is a serious academic offence that includes:

- Presenting another person's paper or ideas as original, submitting borrowed, purchased, ghost-written papers and documents downloaded from internet sites.
- Extensive paraphrasing
- Flagrant failure to properly cite sources. This includes uncited ideas, quotations and/ or words.

Students are expected to implement the methods taught in COMM117, COMM118 and LIBS130and should be cognizant of the fact that credit will not be given for work found to be plagiarized. Repeated incidents of plagiarism will result in a failing grade and/or academic sanction.

COSTAATT requires students to adhere to the APA (American Psychology Association) citation standards that require in text citation and a reference list. Details of these requirements are as follows:

- In text citation (Quotes/Paraphrasing)
  - Direct quotation
    - Use quotation marks and include page numbers (when quoting books, journals and periodicals) or paragraph number (para. when quoting online sources.
    - A quotation of 40 or more words should be formatted as a freestanding, indented block of text without quotation marks.
  - Indirect quotation/paraphrasing
  - Citations from a secondary source

- References list
  - At the end of an assignment, the full bibliographic information for each source cited in text should be provided. Do not use footnotes
  - References must be listed in alphabetical order by author and should use the hanging indent format.
  - o Books / Reports / DVDs
    - Each reference should include four elements:
      - Author/Editor/Produ cer
      - Date
      - Title
      - Publication Information
- Periodicals -Serials or periodicals are resources published on a regular basis, such as journals, magazines and newspapers. The elements to be included are:
  - Author(s)
  - Date
  - Title of article
  - Title of Periodical
  - Volume, Issue and Page numbers
- Webpages (unpublished and informally published work) Reference to web page should include the following elements :
  - Author
  - Date
  - Title
  - Retrieval Statement (URL)

#### THE TEACHING TEAM FOR THIS COURSE:

In addition to the lecturer, several people are responsible for the smooth and efficient running of this course. From time to time, a student will interact with one of the following people:

#### • The Programme Assistant

Students may leave messages for their lecturer with the Programme Assistant, including late lab submissions. The Programme Assistant also sets up appointments should a student wish to see the Department Chair.

#### • Lab Lecturer

In some courses, team teaching is performed where one lecturer is in charge of the theory component of the course and another, highly qualified lecturer teaches the laboratory component. This lecturer is additionally responsible for collecting and grading lab reports.

#### • Lab Technicians

The Lab Technicians are highly capable individuals who are responsible for setting up labs, assisting with handling samples and equipment during labs and responsible for lab safety procedures and protocols. In case of an emergency, the Lab Technician and Lab Lecturer are responsible for your safety in the lab.

#### **ESSENTIAL SUPPLIES**

- Text books students should walk with their text books to class and to labs.
- Lab manual to be provided at the start of the lab component of each course.
- Appropriate Lab wear slippers, flip-flops and open toed footwear are strictly prohibited in the Labs. Students are also expected to wear protective clothing in labs, for example a lab coat. For the safety of all concerned, the Lab Technician has the responsibility to deny a student access to the lab if they are improperly attired.

#### **TEXTBOOKS:**

**Recommended Texts:** 

#### **General Chemistry (9th Edition)**

Kenneth W. Whitten Raymond E. Davis M. Larry Peck George G. Stanley ISBN-13:978-0-495-39163-0 ISBN-10:0-495-39163-8

#### **Chemistry:Principles & Practice (2nd Edition)**

Reger, Goode & Mercer ISBN- **13:** 9780030059186 **ISBN:** 0030059186

#### **AUDIO-VISUAL RESOURCES:**

Multimedia Projector, Laptop with Microsoft Office Word, PowerPoint, Excel, Multimedia Player DVD drive, USB ports and Speakers.

#### **BIBLIOGRAPHY IN PREPARING SYLLABUS:**

Brown, T.; LeMay, H; Bursten, B, 2006. *Chemistry, The Central Science*. Pearson Education Inc. Whitten, <u>Kenneth W.</u>; Davis, <u>Raymond E.</u>; Peck, <u>Larry</u>; Stanley, <u>George G. 2010.</u> *General Chemistry*, 9th *Edition*. Brooks/Cole Cengage Learning

#### **COURSE COORDINATOR:**

Ms. Romona Olton Senior Lecturer Department of Natural and Life Sciences COSTAATT Romona.olton@my.costaatt.edu.tt

#### **DEPARTMENT CHAIR:**

Ms. Delamae Wilson Chair: Natural & Life Sciences Department COSTAATT Email: <u>DWilson@costaatt.edu.tt</u>

#### Appendix I-

#### **Tables of Specifications for CHEM133 Midterms and Final Examination**

Sections	Marks	Item Type	Competency	%	Comments
				Weighting	
А	30	MCQ, T/F, Diagram labeling, Matching, Short Answer	Knowledge	30%	At least two different item types should be used in this section. No more than 20 marks should be allocated to MCQs in this section.
В	50	MCQ, T/F, Diagram labeling, Matching, Short Answer	Analytical Ability	50%	At least two different item types should be used in this section. No more than 10 marks should be allocated to MCQs in this section.
С	20	Essay Question	Analytical Ability	10%	A rubric is provided in the course
			Effective Communication	10%	outline to guide marking in this section (see Appendix VII).

### Table of Specifications for CHEM133 Midterms I & II - 15% Each

#### Table of Specifications for CHEM133 Final Examination - 40%

Section	Marks	Item Type	Competency	% Weighting	Comments
А	30	MCQ, T/F, Diagram labeling, Matching, Short Answer	Knowledge	30	At least two different item types should be used in this section. No more than 20 marks should be allocated to MCQs in this section.
В	40	MCQ, T/F, Diagram labeling, Matching, Short Answer	Analysis	40	At least two different item types should be used in this section. No more than 10 marks should be allocated to MCQs in this section.
С	20	Essay	Analysis Effective Communication	10 10	A rubric is provided in the course outline to guide marking in this section (see Appendix VII).
D	10	Diagram labeling, short answer, matching	Technical Expertise	10	This question must test, at the appropriate level, topics related to those covered in the laboratory aspect of the course.

# **Rubric for grading CHEM 133 Group Project**

ORAL PRESENTATION						
Criteria	Weighting	Excellent	Good	Fair	Weak	
Introduction	4	(4) Introduction is new, original and intelligent at a level appropriate to the audience.	(3) Gets audience attention immediately by starting with a statement/ relevant humour	(2) Makes the audience curious to hear about the topic	(1) Is underdeveloped and irrelevant	
Clear and Logical Format of Presentation	4	(4) Demonstrates clear and logical sequencing that is comprehensive and detailed.	(3) Generally comprehensive and detailed. Small gaps in sequencing and detail.	(2) Examination of topic not very clear. Gaps in sequencing and no detail on contents.	(1) Shows confusion and disorder in sequencing of content. No structures and detail.	
Information and Communication Technology Skills	4	(4) Student uses audio, video, pictures, clip art and other files to collaborate for the creation of an electronic product that effectively informs multiple audiences both inside and outside the college environment.	(3) Some of the audio, video, pictures, clip art and other files used were inappropriate and/or were not necessary.	(2) Most of the audio, video, pictures, clip art and other files used were inappropriate and/or were not necessary.	(1) No audio, video, pictures, clip art or other files were used.	
Communication	4	(4) Fluent speech, engaging in clear dialogue and proficient use of English and correct grammar.	(3) Clarity maintained, only minor errors in English and grammar. Generally clear.	(2) Reasonable use of English. Some errors in fluency.	(1) Lacking in fluency. Major errors in English and grammar. Poor use of language.	
Response to Questions	3	(3) Clear, articulate. Logical/demonstrat es critical thinking. Response relevant to questions asked.	(2) Attempts to answer questions. Responses not completely relevant.	-	(1) No attempts to answer questions asked.	
Timing	3	(3) Finished within 75 – 100% of the allocated time.	(2) Finished within a 50% deviation of the allocated time.	-	(1) Poor planning. Showed no consideration for time keeping.	

			marked.	1	1
Content 12		(12) All parts are included. No errors exist in the information.	(9) All parts are included. Minor errors exist in the information.	(6) One part is missing. Minor errors exist in the information.	(3) More than one part is missing. Minor errors exist in the information.
Organizational Skills	4	(4) Demonstrates clear and logical sequencing that is comprehensive and detailed.	(3) Generally comprehensive and detailed. Small gaps in sequencing and detail.	(2) Examination of topic not very clear. Gaps in sequencing and no detail on contents.	(1) Shows confusion and disorder in sequencing of content. No structures and detail.
Accuracy of 4 Expression		(4) Makes virtually no grammatical, spelling or punctuation errors. Establishes credibility with the audience	(3) Makes few grammatical, spelling or punctuation errors.	(2) Makes a moderate number of grammatical, spelling or punctuation errors.	(1) Makes repeated grammatical, spelling or punctuation errors.
Aesthetics	4	(4) Diagrams, tables and figures so clear and understandable as to enhance report impact	(3) Diagrams, tables and figures are readable and understandable; style is acceptable	(2) Diagrams, tables and figures are sloppy and unclear	(1) No diagrams, tables or figures are included
			P SKILLS		
Group Skills	4	(4) Group members were able to work on the project and resolve group issues amongst themselves.	(3) Lecturer had to intervene one (1) time to help group members to resolve group issues.	(2) Lecturer had to intervene two (2) times to help group members to resolve group issues.	(1) Lecturer had to intervene more than twice to help group members to resolve group issues.
TOTAL / 50					
TOTAL / 100					

WRITTEN REPORT

Name of Presenter(s)_

**Other Comments** 

#### Appendix III-

#### **Rubric for grading CHEM 133 Class Assignments**

		PERFORMANCE RANKING					
ASSIGNMENT NUMBER	COMPETENCY	EXCELLENT (8-10)	AVERAGE (5-7)	POOR (0-4)			
1, 2, 3, 6, 7 & 9	ANALYTICAL ABILITY (70%)	Students display a high level of analytical ability as evidenced by accurate answers to most questions.	Students display a moderate level of analytical ability as evidenced by accurate answers to some questions.	Students display a low level of analytical abilitly as evidenced by accurate answers to few questions.			
	COLLABORATION (30%)	The student is an active part of the class group and participates fully in class discussions and activities as directed by the lecturer.	The student is a fairly active part of the class group and participates in class discussions and activities as directed by the lecturer.	The student is not an active part of the class group and does not participate in class discussions and activities as directed by the lecturer.			
4, 5 & 8	ANALYTICAL ABILITY (70%)	Student displays a high level of analytical ability as evidenced by accurate answers to most questions.	Student displays a moderate level of analytical ability as evidenced by accurate answers to some questions.	Student displays a low level of analytical abilitly as evidenced by accurate answers to few questions.			
	EFFECTIVE COMMUNICATION (30%)	Student demonstrates clear and logical sequencing that is comprehensive and detailed. Makes virtually no grammatical, spelling or punctuation errors.	Student's report is generally comprehensive and detailed. Small gaps in sequencing and detail. Makes few grammatical, spelling or punctuation errors.	Student's examination of topic not very clear. Gaps in sequencing and no detail on contents. Makes a moderate number of grammatical, spelling or punctuation errors.			
10	KNOWLEDGE (70%)	Student displays a high level of knowledge as evidenced by accurate answers to most questions.	Student displays a moderate level of knowledge as evidenced by accurate answers to some questions.	Student displays a low level of knowledge as evidenced by accurate answers to few questions.			
	EFFECTIVE COMMUNICATION (30%)	Student demonstrates clear and logical sequencing that is comprehensive and detailed. Makes virtually no grammatical, spelling or punctuation errors.	Student's report is generally comprehensive and detailed. Small gaps in sequencing and detail. Makes few grammatical, spelling or punctuation errors.	Student's examination of topic not very clear. Gaps in sequencing and no detail on contents. Makes a moderate number of grammatical, spelling or punctuation errors.			

# Rubric for CHEM133 Class Assignments - 10%

# Appendix IV-Format guide for CHEM133 Laboratory Reports

OLD FORMAT	NEW FORMAT	INFORMATION IN THIS SECTION	CORE COMPETENCY BEING DEVELOPED
Aim	Introduction	Gives the purpose of the lab and its theoretical background.	EFFECTIVE COMMUNICATION
Theory			KNOWLEDGE
Apparatus		Details what materials and equipment were/should be* used to carry out the experiment,	KNOWLEDGE*
Method	Materials and Methods	and the way in which they were/will be* used. Also clarifies how potential sources of error can	EFFECTIVE COMMUNICATION
Precautions		be avoided by the choice of suitable methods and materials.	TECHNICAL EXPERTISE
Drawing			
Results		Provides raw (i.e., uninterpreted) data collected	
Treatment of	Results	and (perhaps) expresses the data in table form, as percentages/ratios, charts, tables, graphs, drawings. Data may also be used to perform	TECHNICAL EXPERTISE
results		calculations.	EFFECTIVE
			COMMUNICATION
Discussion and Conclusion	Discussion	Considers how the data you obtained is linked to the purpose of the lab and explores the applications of the experiment and the conclusions that can be made. Judges any unavoidable limitations of your experimental	ANALYTICAL ABILITY
Sources of error		design and assesses their effect on the results.	

# Appendix V-Rubric for marking CHEM133 Laboratory Reports

		PERFORMANCE RATING							
SECTION	COMPETENCY	Excellent	Average	Fair	Poor				
		4	3	2	1				
	Knowledge	The theoretical discussion is complete, factual and relevant.	The theoretical discussion is incomplete or not factual or irrelevant.	The theoretical discussion is either incomplete or not factual, and irrelevant.	The theoretical discussion is incomplete, not factual and irrelevant.				
	Effective Communication 1	The aim and/or hypothesis is clearly stated in a testable form.	The aim and/or hypothesis is slightly unclear.	The aim and/or hypothesis is quite vague.	The aim and/or hypothesis is not stated.				
Introduction	Effective communication 2 (Lab Format)	Lab neatly written with all required sections included in the correct order including date, title and all post lab questions.	Lab tidily/ untidily written with most/all required sections included in the correct order including date, title and all/most post lab questions.	Lab tidily/ untidily written with few/most required sections included in the correct order including date, title and most post lab questions.	Lab untidily written with few required sections included in the correct order. Few post lab questions answered.				
Materials and Methods	Knowledge ( <b>Plan</b> & <b>Design only</b> ) The student chooses an appropriate method, and includes a complete, factual and relevant theoretical discussion.		The student chooses an inappropriate method, or includes an incomplete or non- factual or irrelevant theoretical discussion.	The student chooses an inappropriate method, and includes either an incomplete or non-factual, and irrelevant theoretical discussion.	The student chooses an inappropriate method, and includes an incomplete, non-factual and irrelevant theoretical discussion.				

	Effective Communication	Method is correct, logical, complete and written in appropriate tense. Materials list is complete.	Method is incorrect, or illogical, or incomplete or written in inappropriate tense, or materials list is incomplete.	Method has two - three deficiencies and/or materials list is incomplete.	Method is incorrect and illogical and incomplete and written in inappropriate tense and materials list is incomplete.
	Technical expertise	Method and type of materials chosen so as to eliminate all potential sources of error.	Method and type of materials chosen so as to eliminate most potential sources of error.	Method and type of materials chosen so as to eliminate few potential sources of error.	No effort made to choose method and materials chosen so as to eliminate potential sources of error.
	Effective Communication	All results are included in appropriate/ suitable format.	All/Most results are included in inappropriate/ appropriate format.	Most results are included in inappropriate format.	Few results are recorded in inappropriate format.
Results	ts Technical Expertise 1 Guidelines for each different mode of data presentation used strictly adhered to. All results correct.		Guidelines for each/most different mode of data presentation used generally/strictly adhered to. All/most results correct.	Guidelines for most different mode of data presentation used generally adhered to and most results correct.	No effort made to adhere to guidelines for each different mode of data presentation used or most results incorrect.
	Technical Expertise 2	All lab equipment used and techniques performed correctly. All general and safety rules strictly adhered to.	Most lab equipment used and techniques performed correctly. All general and safety rules strictly adhered to.	Most lab equipment used and techniques performed correctly. Most general and safety rules strictly adhered to.	Few lab equipment used and techniques performed correctly. Few general and safety rules strictly adhered to.

	Laboratory skills (marked during the lab session)				
Discussion	Analytical Ability	The laboratory report: 1. Evaluates the results obtained in the context of the aim/ hypothesis. 2. Advances possible explanations of the results with reference to the theoretical discussion in the Introduction. 3. Deduces which procedures may have introduced errors into the results and assesses their effects. 4. Draws appropriate, relevant conclusions from the results.	The laboratory report: Fulfills any three requirements of this section completely and one only partially/ not at all.	The laboratory report: Fulfills any two requirements of this section completely and two only partially/ not at all.	The laboratory report: Fulfills any one requirement of this section completely and three only partially/ not at all.
Post lab questions	Analytical Ability	All questions answered correctly.	Most questions answered correctly.	Few questions answered correctly.	No questions answered correctly.

#### <u>Appendix VI -</u> <u>Form to be returned to students after grading of Laboratory Reports</u>

#### LAB ASSESSMENT SHEET

Students please submit one sheet per lab with Sections i-iv filled out.

i. Student	name:					
ii. Course:						
iii. Lab Titl	e:					
iv. Date:						
v. FOR LE	CTURER'S USE O	NLY	DO	NOT	WRI	TE IN THIS SECTION
Section	Competency		SCO	)RE		COMMENTS
	Knowledge	4	3	2	1	
Introduction	Eff. Comm. 1	4	3	2	1	
	Eff. Comm. 2	4	3	2	1	
	TOTAL					
	Knowledge	4	3	2	1	
Materials and	Eff. Comm.	4	3	2	1	
Methods	Tech. Expertise	4	3	2	1	
	TOTAL					
	Eff. Comm.	4	3	2	1	
Results	Tech. Exp. 1	4	3	2	1	
Results	Tech. Exp. 2	4	3	2	1	
	TOTAL		•	•	•	
Discussion	Anal. Ability	4	3	2	1	
LISCASSION	TOTAL					
Post Lab	Anal. Ability	4	3	2	1	
questions	TOTAL					
	LAB MARK (%):					
I	Lecturer Signature:					

# Appendix VII-

	PERFORMANCE RANKING						
COMPETENCY	EXCELLENT	AVERAGE	POOR				
	(8-10)	(5-7)	(0-4)				
EFFECTIVE COMMUNICATION	The essay contains the following elements:						
(10%)	1. Sentences which are all well constructed, with variation in structure and length.	The error					
Sentence Structure,	2. No grammatical and/or spelling errors	The essay contains three - four of the required	The essay contains less than three of the required elements.				
Grammar,	3. Legible handwriting	elements.					
Mechanics, &	4. Correct use of paragraphs						
Spelling	5. Correct use of relevant jargon The essay contains the following elements:						
ANALYTICAL ABILITY (10%) Interpretation of question and use of scientific jargon	<ol> <li>The question is accurately interpreted.</li> <li>Main ideas are appropriately emphasized, and are well supported by detailed and accurate information and appropriate jargon.</li> <li>The introduction is inviting, states the main topic, and provides an overview of the paper.</li> <li>Information is relevant and presented in a logical order.</li> <li>The conclusion is strong and supported by the main points of the essay.</li> </ol>	The essay contains three - four of the required elements.	The essay contains less than three of the required elements.				

# **Rubric for Grading of the Midterm & Final Examination Essay (20%)**