Chemistry Worksheet: Limiting Reactant Worksheet #1

- 1. Consider the following reaction: $2 \text{ Al} + 6 \text{ HBr} \rightarrow 2 \text{ AlBr}_3 + 3 \text{ H}_2$
 - a. When 3.22 moles of Al reacts with 4.96 moles of HBr, how many moles of H₂ are formed?
 - b. What is the limiting reactant?
 - c. For the reactant in excess, how many moles are left over at the end of the reaction?

- 2. Consider the following reaction: $3 \text{ Si} + 2 \text{ N}_2 \rightarrow \text{ Si}_3 \text{N}_4$
 - a. When 21.44 moles of Si reacts with 17.62 moles of N₂, how many moles of Si₃N₄ are formed?
 - b. What is the limiting reactant?
 - c. For the reactant in excess, how many moles are left over at the end of the reaction?

- 3. Consider the following reaction: $2 \text{ CuCl}_2 + 4 \text{ KI} \rightarrow 2 \text{ CuI} + 4 \text{ KCl} + I_2$
 - a. When 0.56 moles of CuCl₂ reacts with 0.64 moles of KI, how many moles of I₂ are formed?
 - b. What is the limiting reactant?
 - c. For the reactant in excess, how many moles are left over at the end of the reaction?

- 4. Consider the following reaction: $4 \text{ FeS}_2 + 11 \text{ O}_2 \rightarrow 2 \text{ Fe}_2 \text{O}_3 + 8 \text{ SO}_2$
 - a. When 26.62 moles of FeS₂ reacts with 5.44 moles of O₂, how many moles of SO₂ are formed?
 - b. What is the limiting reactant?
 - c. For the reactant in excess, how many moles are left over at the end of the reaction?

Chemistry Worksheet: Limiting Reactant Worksheet #1

- 1. Consider the following reaction: $2 \text{ Al} + 6 \text{ HBr} \rightarrow 2 \text{ AlBr}_3 + 3 \text{ H}_2$
 - a. When 3.22 moles of Al reacts with 4.96 moles of HBr, how many moles of H₂ are formed? **2.48 mol H₂**
 - b. What is the limiting reactant? **HBr**
 - c. For the reactant in excess, how many moles are left over at the end of the reaction? **1.57 mol Al**
 - $3.22 \text{ mol Al} * (3 \text{ mol H}_2 / 2 \text{ mol Al}) = 4.83 \text{ mol H}_2$
 - $4.96 \text{ mol HBr} * (3 \text{ mol H}_2 / 6 \text{ mol HBr}) = 2.48 \text{ mol H}_2$

3.22 mol Al

2.48 mol H_2 * (2 mol Al / 3 mol H_2) = 1.65 mol Al used up

<u>-1.65 mol Al</u> 1.57 mol Al

- 2. Consider the following reaction: $3 \text{ Si} + 2 \text{ N}_2 \rightarrow \text{ Si}_3 \text{N}_4$
 - a. When 21.44 moles of Si reacts with 17.62 moles of N_2 , how many moles of Si_3N_4 are formed? **7.147 mol Si₃N₄**
 - b. What is the limiting reactant? Si
 - c. For the reactant in excess, how many moles are left over at the end of the reaction? 3.33 mol N₂
 - $21.44 \text{ mol Si} * (1 \text{ mol Si}_3N_4 / 3 \text{ mol Si}) = 7.147 \text{ mol Si}_3N_4$
 - $17.62 \text{ mol } N_2 * (1 \text{ mol } Si_3N_4 / 2 \text{ mol } N_2) = 8.810 \text{ mol } Si_3N_4$

7.147 mol Si₃N₄ * (2 mol N₂ / 1 mol Si₃N₄) = 14.29 mol N₂ used up $\begin{array}{r}
21.44 \text{ mol N}_2 \\
-14.29 \text{ mol N}_2 \\
3.33 \text{ mol N}_2
\end{array}$

- 3. Consider the following reaction: $2 \text{ CuCl}_2 + 4 \text{ KI} \rightarrow 2 \text{ CuI} + 4 \text{ KCl} + \text{I}_2$
 - a. When 0.56 moles of CuCl₂ reacts with 0.64 moles of KI, how many moles of I₂ are formed? **0.16 mol I₂**
 - b. What is the limiting reactant? **KI**
 - c. For the reactant in excess, how many moles are left over at the end of the reaction? **0.24 mol CuCl₂**

 $0.56 \text{ mol CuCl}_2 * (1 \text{ mol I}_2 / 2 \text{ mol CuCl}_2) = 0.28 \text{ mol I}_2$

 $0.64 \text{ mol KI} * (1 \text{ mol } I_2/4 \text{ mol KI}) = 0.16 \text{ mol } I_2$

0.56 mol CuCl₂

 $0.16 \text{ mol } I_2 * (2 \text{ mol } CuCl_2 / 1 \text{ mol } I_2) = 0.32 \text{ mol } CuCl_2$ used up

<u>-0.32 mol CuCl</u>₂ 0.24 mol CuCl₂

- 4. Consider the following reaction: $4 \text{ FeS}_2 + 11 \text{ O}_2 \rightarrow 2 \text{ Fe}_2 \text{O}_3 + 8 \text{ SO}_2$
 - a. When 26.62 moles of FeS₂ reacts with 5.44 moles of O₂, how many moles of SO₂ are formed? **3.96 mol SO₂**
 - b. What is the limiting reactant? O_2
 - c. For the reactant in excess, how many moles are left over at the end of the reaction? 24.64 mol FeS₂

 $26.62 \text{ mol FeS}_2 * (8 \text{ mol SO}_2 / 4 \text{ mol FeS}_2) = 53.24 \text{ mol SO}_2$

 $5.44 \text{ mol } O_2 * (8 \text{ mol } SO_2 / 11 \text{ mol } O_2) = 3.96 \text{ mol } SO_2$

26.62 mol FeS₂

3.96 mol SO_2 * (4 mol FeS_2 / 8 mol SO_2) = 1.98 mol FeS_2 used up 24.64 mol FeS_2