Chemistry Worksheet: Limiting Reactant Worksheet \#1

1. Consider the following reaction: $2 \mathrm{Al}+6 \mathrm{HBr} \rightarrow 2 \mathrm{AlBr}_{3}+3 \mathrm{H}_{2}$
a. When 3.22 moles of Al reacts with 4.96 moles of HBr , how many moles of H_{2} are formed?
b. What is the limiting reactant?
c. For the reactant in excess, how many moles are left over at the end of the reaction?
2. Consider the following reaction: $3 \mathrm{Si}+2 \mathrm{~N}_{2} \rightarrow \mathrm{Si}_{3} \mathrm{~N}_{4}$
a. When 21.44 moles of Si reacts with 17.62 moles of N_{2}, how many moles of $\mathrm{Si}_{3} \mathrm{~N}_{4}$ are formed?
b. What is the limiting reactant?
c. For the reactant in excess, how many moles are left over at the end of the reaction?
3. Consider the following reaction: $2 \mathrm{CuCl}_{2}+4 \mathrm{KI} \rightarrow 2 \mathrm{CuI}+4 \mathrm{KCl}+\mathrm{I}_{2}$
a. When 0.56 moles of CuCl_{2} reacts with 0.64 moles of KI , how many moles of I_{2} are formed?
b. What is the limiting reactant?
c. For the reactant in excess, how many moles are left over at the end of the reaction?
4. Consider the following reaction: $4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}$
a. When 26.62 moles of FeS_{2} reacts with 5.44 moles of O_{2}, how many moles of SO_{2} are formed?
b. What is the limiting reactant?
c. For the reactant in excess, how many moles are left over at the end of the reaction?

Chemistry Worksheet: Limiting Reactant Worksheet \#1

1. Consider the following reaction: $2 \mathrm{Al}+6 \mathrm{HBr} \rightarrow 2 \mathrm{AlBr}_{3}+3 \mathrm{H}_{2}$
a. When 3.22 moles of Al reacts with 4.96 moles of HBr , how many moles of H_{2} are formed? $2.48 \mathrm{~mol} \mathrm{H}_{2}$
b. What is the limiting reactant? $\mathbf{H B r}$
c. For the reactant in excess, how many moles are left over at the end of the reaction? 1.57 mol Al
$3.22 \mathrm{~mol} \mathrm{Al} *\left(3 \mathrm{~mol} \mathrm{H}_{2} / 2 \mathrm{~mol} \mathrm{Al}\right)=4.83 \mathrm{~mol} \mathrm{H}_{2}$
$4.96 \mathrm{~mol} \mathrm{HBr}^{*}\left(3 \mathrm{~mol} \mathrm{H}_{2} / 6 \mathrm{~mol} \mathrm{HBr}\right)=2.48 \mathrm{~mol} \mathrm{H}_{2}$
3.22 mol Al
$2.48 \mathrm{~mol} \mathrm{H}_{2} *\left(2 \mathrm{~mol} \mathrm{Al} / 3 \mathrm{~mol} \mathrm{H}_{2}\right)=1.65 \mathrm{~mol} \mathrm{Al}$ used up
$-1.65 \mathrm{~mol} \mathrm{Al}$
1.57 mol Al
2. Consider the following reaction: $3 \mathrm{Si}+2 \mathrm{~N}_{2} \rightarrow \mathrm{Si}_{3} \mathrm{~N}_{4}$
a. When 21.44 moles of Si reacts with 17.62 moles of N_{2}, how many moles of $\mathrm{Si}_{3} \mathrm{~N}_{4}$ are formed? $7.147 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4}$
b. What is the limiting reactant? $\mathbf{S i}$
c. For the reactant in excess, how many moles are left over at the end of the reaction? $3.33 \mathrm{~mol} \mathrm{~N}_{2}$
$21.44 \mathrm{~mol} \mathrm{Si}^{*}\left(1 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4} / 3 \mathrm{~mol} \mathrm{Si}\right)=7.147 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4}$
$17.62 \mathrm{~mol} \mathrm{~N}_{2} *\left(1 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4} / 2 \mathrm{~mol} \mathrm{~N}_{2}\right)=8.810 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4}$
$7.147 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4} *\left(2 \mathrm{~mol} \mathrm{~N}_{2} / 1 \mathrm{~mol} \mathrm{Si}_{3} \mathrm{~N}_{4}\right)=\begin{array}{r}14.29 \mathrm{~mol} \mathrm{~N} \\ \text { used up }\end{array} \quad \frac{-14.29 \mathrm{~mol} \mathrm{~N}_{2}}{3.33 \mathrm{~mol} \mathrm{~N}_{2}}$
3. Consider the following reaction: $2 \mathrm{CuCl}_{2}+4 \mathrm{KI} \rightarrow 2 \mathrm{CuI}+4 \mathrm{KCl}+\mathrm{I}_{2}$
a. When 0.56 moles of CuCl_{2} reacts with 0.64 moles of KI , how many moles of I_{2} are formed? $0.16 \mathbf{~ m o l ~}_{\mathbf{2}}$
b. What is the limiting reactant? KI
c. For the reactant in excess, how many moles are left over at the end of the reaction? $0.24 \mathrm{~mol} \mathrm{CuCl}_{2}$
$\left.0.56 \mathrm{~mol} \mathrm{CuCl}_{2} *\left(1 \mathrm{~mol} \mathrm{I}_{2} / 2 \mathrm{~mol} \mathrm{CuCl}\right)_{2}\right)=0.28 \mathrm{~mol} \mathrm{I}_{2}$
$0.64 \mathrm{~mol} \mathrm{KI}^{*}\left(1 \mathrm{~mol} \mathrm{I}_{2} / 4 \mathrm{~mol} \mathrm{KI}\right)=0.16 \mathrm{~mol} \mathrm{I}_{2}$
$0.56 \mathrm{~mol} \mathrm{CuCl}_{2}$
$0.16 \mathrm{~mol} \mathrm{I}_{2} *\left(2 \mathrm{~mol} \mathrm{CuCl}_{2} / 1 \mathrm{~mol} \mathrm{I}_{2}\right)=0.32 \mathrm{~mol} \mathrm{CuCl}_{2} \quad-0.32 \mathrm{~mol} \mathrm{CuCl}_{2}$ used up $\quad 0.24 \mathrm{~mol} \mathrm{CuCl}_{2}$
4. Consider the following reaction: $4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}$
a. When 26.62 moles of FeS_{2} reacts with 5.44 moles of O_{2}, how many moles of SO_{2} are formed? $3.96 \mathrm{~mol} \mathrm{SO}_{2}$
b. What is the limiting reactant? \mathbf{O}_{2}
c. For the reactant in excess, how many moles are left over at the end of the reaction? $24.64 \mathrm{~mol} \mathrm{FeS}_{2}$
$26.62 \mathrm{~mol} \mathrm{FeS}_{2} *\left(8 \mathrm{~mol} \mathrm{SO}_{2} / 4 \mathrm{~mol} \mathrm{FeS}_{2}\right)=53.24 \mathrm{~mol} \mathrm{SO}_{2}$
$5.44 \mathrm{~mol} \mathrm{O}_{2} *\left(8 \mathrm{~mol} \mathrm{SO}_{2} / 11 \mathrm{~mol} \mathrm{O}_{2}\right)=3.96 \mathrm{~mol} \mathrm{SO}_{2}$
$26.62 \mathrm{~mol} \mathrm{FeS}_{2}$
$3.96 \mathrm{~mol} \mathrm{SO}_{2} *\left(4 \mathrm{~mol} \mathrm{FeS}_{2} / 8 \mathrm{~mol} \mathrm{SO}_{2}\right)=1.98 \mathrm{~mol} \mathrm{FeS}_{2} \quad \underline{-1.98 \mathrm{~mol} \mathrm{FeS}_{2}}$ used up $\quad 24.64 \mathrm{~mol} \mathrm{FeS}_{2}$
